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Abstract
Poincare breaking scale causes explicit gauge invariance breaking at the loop level in the standard model
(SM) – a renormalizable QFT in flat spacetime. In this talk, we show that gauge invariance can be restored
by extending the general covariance by a covariance relation for curvature such that this extended covari-
ance carries effective QFTs into curved spacetime to lead up to QFT-GR reconciliation, with renormalized
QFTs and emergent GR. This mechanism predicts the existence of new physics beyond the SM (BSM), and
does not necessitate the BSM sector to have any non-gravitational coupling with the SM. The BSM sector
can have a dark subsector comprising the dark matter, dark energy, and other possible SM-singlet fields.
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1. INTRODUCTION
The GR-QFT reconciliation is a long-standing problem. It is well known that classical field theories [1], governed by actions
Scl (η, ψ, ∂ψ) of the fields ψ in the flat spacetime of metric ηµν, are carried into curved spacetime of a metric gµν by letting

Scl (η, ψ, ∂ψ) ↪→ Scl (g, ψ,∇ψ) + “curvature sector” (1)

in accordance with general covariance [2], which is expressed by the map

ηµν ↪→ gµν , ∂µ ↪→ ∇µ (2)

such that the Levi-Civita connection

gΓλ
µν =

1
2

gλρ
(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
(3)

sets the covariant derivative ∇µ, the Ricci curvature Rµν(gΓ), and the scalar curvature R(g) = gµνRµν(gΓ). The “curvature sector”
in (1), added by hand for gµν to be able to gain dynamics, must be of the form

“curvature sector” =
∫

d4x
√
−g
{
− M̃2

2
R(g) + c̃2R(g)2 +

c̃3

M̃2 R(g)3 + . . .
}

(4)

if it is to lead to GR. This procedure makes it clear that general covariance can carry classical field theories into curved spacetime if
the curvature sector is structured judiciously [3].

Can general covariance carry also QFTs into curved spacetime? The answer is no. The reason is that QFTs are specific to flat
affine spacetime [4, 5, 6], and cannot therefore exist in curved spacetime in which Poincare invariance, wave-particle duality, and
vacuum uniqueness are all lost [7]. This is a deadlock but, plausibly, an unlockable deadlock in that the uncharted land of effective
QFTs may provide a way out. Indeed, effective QFTs resemble classical field theories in view of their long-wavelength field content
with loop-corrected couplings, and their transformation into curved spacetime may reveal certain clues about possible QFT-GR
concord.

In the rest, it is all effective QFTs. In what follows analyses and discussions will be given for a generic QFT to explicate the
generality of the mechanisms to be constructed. The examples, estimates and predictions will, however, be based on the SM – the
experimentally confirmed model of nature at the Fermi energies. In this regard, Sec. 2 reveals the nature of the UV cutoff, Sec. 3 the
effects of the UV cutoff on gauge invariance, Sec. 4 the restoration of gauge invariance by curvature, and Sec. 5 the sought QFT-GR
reconciliation. Sec. 6 concludes.

2. POINCARE BREAKING SCALE AS THE UV CUTOFF
The effective QFTs take shape with a UV cutoff. The problem is to determine that UV cutoff. To do that, it proves useful to distin-
guish between two kinds of mass scales:
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1. The first kind refers to the masses mi of the quantum fields ψi. They are propagator poles. They are Casimir invariants of the
Poincare group [8]. They respect Poincare invariance. Thus, none of them, not a single mi, can carve out a cutoff. The cutoff
must be an outsider to QFTs. (This does not mean that QFTs cannot be analyzed using cutoff regularization [9].)

2. The second kind refers to curvature. It is an outsider to flat spacetime QFTs but it has a close relative there: a physical cutoff
Λ℘. They are relatives because they both break Poincare invariance. In fact, Λ℘ can be visualized as shadow of curvature on
flat spacetime so that incorporation of gravity into QFTs can be construed as reconstruction of curvature from its shadow.
The Poincare breaking scale Λ℘ must lie above all the mi for entire QFT dynamics to be contained. Then, as the UV cutoff,
Λ℘ restricts loop momenta `µ into the finite interval

−Λ2
℘ ≤ `µ`

µ ≤ Λ2
℘ (5)

and renders thus all loop corrections finite and physical. Its affinity to curvature ensures that Λ℘ is physical, unique, and
reduces always realistic QFTs to effective QFTs [10].

This correspondence between the Poincare breaking scale (UV cutoff) in flat spacetime and the curvature in curved spacetime
eventuates in a covariance relation with which QFTs can be carried into curved spacetime in a way consistent with gravitational
and field-theoretic structures [11].

3. GAUGE SYMMETRY BREAKING BY THE UV CUTOFF
The matter loops, whose momenta range in the band (5), induce quantum corrections to all the masses, couplings and fields in
QFTs. Their effects on relevant operators are particularly important in view mainly of their strong UV sensitivities. To see how, it
suffices to comparatively analyze the field masses and the vacuum energy:

1. The pure loop-induced masses

δM2
V = cVΛ2

℘ (6)

for massless gauge bosons Vµ involve Λ℘ and only Λ℘. They explicitly break gauge symmetries as exemplified in Table 1
with the SM gauge bosons. This means that the UV cutoff Λ℘, conjured up as a mark of curvature on flat spacetime, gives
cause to explicit color and charge breaking (CCB) [12] at the loop level (see [13] for spontaneous CCB).

2. The fermion mass corrections

δm f = m f ∑
i

ĉ f ψi
log

m2
i

Λ2
℘

(7)

involve only the logarithmic ratio of the two scales. This means that the fermion sector maintains gauge invariance and
remains insensitive to the UV effects.

3. The corrections to scalar masses

δm2
φ = cφΛ2

℘ + ∑
i

ĉφψi m
2
i log

m2
i

Λ2
℘

(8)

involve both Λ2
℘ and m2

i . The sheer Λ2
℘ contribution, whose loop factor cφ is given in Table 1 for the SM Higgs boson, gives

cause to the big hierarchy problem [14].
4. Finally, the shift in the vacuum energy

δV = c∅Λ4
℘ + ∑

i
cψi m

2
i Λ2

℘ + ∑
i

ĉψi m
4
i log

m2
i

Λ2
℘

(9)

involves quartics and quadratics of both Λ℘ and mi. It is exemplified in Table 1 for the SM vacuum energy. It gathers both
scales marginally, with of course no physical effects in flat spacetime [15, 16].

The loop corrections (6), (7), (8) and (9) form a quantum effective action S (η, ψ, Λ℘) describing the effective QFT below Λ℘. If this
effective QFT acts like classical field theories then the general covariance map in (2) must be able to carry it into curved spacetime
as

S (η, ψ, Λ℘) ↪→ S (g, ψ, Λ℘) +
∫

d4x
√
−g
{
− M̃2

2
R(g) + c̃2R(g)2 +

c̃3

M̃2 R(g)3 + . . .
}

(10)

with the curvature sector in (4). The problem with this action is that M̃, c̃2, c̃3, · · · are all incalculable constants [17, 11]. The reason
is that matter loops have been used up already in forming the flat spacetime effective action S (η, ψ, Λ℘), and there have remained
thus no loops to induce any extra interaction, with or without curvature. This incalculability problem, which reveals the difference
between classical and effective field theories, ensures that curvature sector in effective QFTs cannot be added by hand with arbitrary
constants.
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Table 1: The loop factors cV at one loop and various problems they give cause for.
Loop Factor SM Fields SM Value Problems Caused

cV gluon 21g2
3

16π2 color breaking

cV weak gauge bosons 21g2
2

16π2 isospin breaking

cV hypercharge gauge boson 39g2
1

32π2 hypercharge breaking

cφ Higgs boson h g2
2str[m2]

8π2 M2
W
≈ − g2

2m2
t

π2 M2
W

big hierarchy problem

c∅ = − str[1]
128π2 over all the SM fields 31

32π2 none (flat spacetime)

∑i cψi m
2
i = str[m2]

32π2 over all the SM fields ≈ − m2
t

4π2 none (flat spacetime)

4. GAUGE SYMMETRY RESTORATION BY CURVATURE
The main implication of the incalculability problem is that curvature must arise from within S (g, ψ, Λ℘) in order not to hinge on
arbitrary, incalculable constants. This can be taken to imply that there must exist some covariance relation between the mass scales
in S (g, ψ, Λ℘) and the curvature. To determine if such a relation exists, it proves efficacious to focus on the gauge sector first,
wherein the loop-induced masses in (6) set the effective action

δSV (η, Λ℘) =
∫

d4x
√
−η cVΛ2

℘ Tr
[
ηµνVµVν

]
(11)

as part of the total effective QFT action S (η, ψ, Λ℘). This action breaks gauge symmetries explicitly. It does so in curved spacetime,
too, if carried there through the incalculability-barred map in (10). This conundrum leads to a pivotal question: Is it possible to
carry (11) into curved spacetime in a way restoring gauge symmetries? Can gauge invariance be the basis for incorporating gravity
into effective QFTs? The answer is “yes”. To see how, it proves useful to start with the self-evident identity [17, 11]

δSV

(
η, Λ2

℘

)
= δSV

(
η, Λ2

℘

)
− IV(η) + IV(η) (12)

in which the gauge-invariant kinetic construct

IV(η) =
∫

d4x
√
−η

cV
2

Tr
{

ηµαηνβVµνVαβ
}

(13)

is subtracted from and added back to δSV
(
η, Λ2

℘

)
. This construct, involving the loop factor cV and the field strength tensor Vµν,

leads to the expanded gauge boson mass action

δSV

(
η, Λ2

℘

)
= −IV(η) +

∫
d4x
√
−ηcVTr

{
Vµ
(
−D2

µν + Λ2
℘ηµν

)
Vν + ∂µ

(
ηαβVαVβµ

)}
(14)

if, at the right hand side of (12), δSV is replaced with (11), “ − IV” is left untouched, and yet “ + IV” is integrated by-parts to
contain D2

µν = D2ηµν − DµDν − Vµν, where Dµ is gauge-covariant derivative. Then, the reformed effective action δSV
(
η, Λ2

℘

)
in

(14) changes to

δSV

(
g, Λ2

℘

)
= −IV(g) +

∫
d4x
√
−gcVTr

{
Vµ
(
−D2

µν + Λ2
℘gµν

)
Vν +∇µ

(
gαβVαVβµ

)}
(15)

under the general covariance map (2) such that Dµ is the gauge-covariant derivative with respect to ∇µ, and D2
µν = D2gµν −

DµDν −Vµν.
Here, a short glance at (15) reveals that δSV

(
g, Λ2

℘

)
would vanish identically if Λ2

℘gµν were replaced with Rµν (gΓ) because

∫
d4x
√
−gcVTr

{
Vµ
(
−D2

µν + Rµν (
gΓ)
)

Vν +∇µ

(
gαβVαVβµ

)}
= IV(g) (16)

as a clear result. This pivotal feature is, however, highly problematic since Λ2
℘gµν ↪→ Rµν (gΓ) contradicts with ηµν ↪→ gµν. If it were

not for this contradiction, metamorphosis of curvature from Λ2
℘gµν would provide a perfect solution to the CCB [17, 11]. This

contradiction is an impasse but it can be overcome by considering a more general map

Λ2
℘gµν ↪→Rµν (Γ) (17)
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in which Rµν(Γ) is the Ricci curvature of a symmetric affine connection Γλ
µν (bearing no a priori relationship to the Levi-Civita

connection gΓλ
µν) [18]. The metamorphosis of Λ2

℘gµν into Rµν(Γ) goes parallel with the metamorphosis of ηµν into gµν as a corre-
spondence between physical quantities in flat and curved spacetimes, and removes the contradiction since the two maps, (2) and
(17), involve independent dynamical variables. In fact, affine curvature may well be the missing substance in general covariance
[3]. In consequence, the action (15) gets recast into a completely new form

δSV (g, R) = −I(g, V) +
∫

d4x
√
−gcVTr

{
Vµ
(
−D2

µν + Rµν (Γ)
)

Vν +∇µ

(
gαβVαVβµ

)}
(18)

under the maps (2) and (17), and reduces to

δSV(g, R, R)=
∫

d4x
√
−gcVTr

{
Vµ
(
Rµν (Γ)− Rµν (

gΓ)
)
Vν
}

(19)

through the identity (16). But, this reduced action is non-vanishing. Namely, the CCB [12] continues to catabolize the QFTs.

5. QFT-GR RECONCILIATION
It is clear that the CCB action δSV (g, R, R) in (19) is suppressed only if Rµν(Γ) falls in close vicinity of Rµν (gΓ). And the question
of if such a suppression regime is ever attainable is decided by the dynamics of Γλ

µν, which is derived below systematically by
highlighting important points and revealing their physics implications.

The first important point revolves around the identity (16) with which the action (18) reduces to (19). It rests implicitly on
the condition that cV remains unchanged under (17). This means that log Λ℘, which arises in cV at higher loops, must remain
untouched while Λ2

℘ itself morphs into curvature as in (17). This condition, which might seem artificial at first sight, is actually
what is needed for the renormalization of QFTs in course of the incorporation of gravity [20, 10, 11]. Indeed, logarithmic parts of
(7), (8) and (9) lead to the effective action (to be completed by including the trilinear and quadrilinear corrections)

δŜ(g, ψ, log Λ℘) ⊃ −∑
i

ĉψi m
4
i log

m2
i

Λ2
℘
−∑

i,φ
ĉφψi m

2
i log

m2
i

Λ2
℘

φ†φ−∑
i, f

ĉ f ψi
log

m2
i

Λ2
℘

m f f f (20)

so that the improved action

SQFT(g, ψ, log Λ℘) = Scl(g, ψ) + δŜ(g, ψ, log Λ℘) (21)

is of the same form as Scl(g, ψ) except that all of its fields and couplings get regularized with log Λ℘ corrections. Needless to say,
the formal equivalence [21]

log Λ2
℘ =

1
ε
− γE + 1 + log 4πµ2 (22)

translates SQFT(g, ψ, log Λ℘) into dimensional regularization in 4 + ε dimensions such that the discard of 1/ε pieces results in the
MS renormalization of QFTs at the scale µ. In general, µ-independence of scattering amplitudes leads to the renormalization group
equations.

The second important point concerns Λ2
℘ and Λ4

℘ terms in (6), (8) and (9). In fact, the flat spacetime effective action correspond-
ing to (8) plus (9)

δS∅φ(η, Λ℘)=
∫

d4x
√
−η

{
−c∅Λ4

℘−∑
i

cψi m
2
i Λ2

℘−cφφ†φΛ2
℘

}
(23)

combines, after mapping through (2) and (17), with the action (19) corresponding to (6) and leads to a curvature sector which is not
the incalculable one in (4) but a completely determined one

“curvature sector” =
∫

d4x
√
−g
{
−QµνRµν (Γ) +

1
16

c∅
(

gµνRµν(Γ)
)2 − cV Rµν (

gΓ)Tr {VµVν}
}

(24)

in which the disformal metric

Qµν =

(
1
4 ∑

i
cψi m

2
i +

1
4

cφφ†φ +
1
8

c∅gαβRαβ(Γ)

)
gµν − cVTr

{
VµVν

}
(25)
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involves all the scalars φ and vectors Vµ, with implied summation.
The third important point refers to the curvature sector in (24), which ensures that the fundamental scale of gravity

M2
Pl =

1
2 ∑

i
cψi m

2
i (26)

arises as a pure quantum effect, and its one-loop value (M2
Pl)1−loop = str

{
m2}/64π2 reveals that the bosonic sector of QFTs must

outweigh (some 1000 Planckian bosons or many more sub-Planckian bosons, with a relatively light fermion sector). It thus turns
out that the QFTs themselves set the scale of gravity. In the SM, M2

Pl in (26) comes out wrong both in sign and size, as revealed by
the last row of Table 1. This means that the SM needs be extended by some BSM sector so that MPl can come out right via the BSM
mass spectrum [10, 11]. The end result is that the SM cannot be the whole story; there must exist a BSM sector, which, according
to (26), does not have interact with the SM non-gravitationally. Needless to say, the BSM sector can form (fully or partially) a dark
sector [11, 22] containing the dark matter, dark energy and other possible non-SM phenomena.

The fourth important is about the equation of motion for Γλ
µν, which is stipulated by the stationarity of the action (24) against

variations in Γλ
µν. It takes the compact form

Γ∇λQµν = 0 (27)

and its solution [18, 19]

Γλ
µν = gΓλ

µν +
1
2
(Q−1)λρ

(
∇µQνρ +∇νQρµ −∇ρQµν

)
(28)

falls within the close proximity of gΓλ
µν due to the enormity of MPl . In fact, the affine curvature expands as

Rµν(Γ) = Rµν(
gΓ) +

1
M2

Pl

(
∇α∇µδ

β
ν +∇α∇νδ

β
µ −�δα

µδ
β
ν −∇ν∇µgαβ

)
Qαβ +O

(
M−4

Pl

)
(29)

with a remainder which invariably involves derivatives (not masses) of φ and Vµ [11].
The fifth important point pertains to the CCB action in (19). It undergoes a strong suppression

∫
d4x
√
−g ∑

V
cVTr

{
Vµ
(
Rµν(Γ)− Rµν (

gΓ)
)

Vν
}
=
∫

d4x
√
−g
{

0 +O
(

M−2
Pl

)}
(30)

under the solution of the affine curvature in (29). The CCB is thus prevented modulo O
(

M−2
Pl

)
effects [11]. It turns out that

extension of general covariance (2) by the curvature map (17) does indeed restore gauge symmetries (listed in Table 1 for the SM)
through the identity (12).

The sixth important point relates to the metric-affine curvature sector in (24) [18, 19, 23], which gets to the GR realm

“curvature sector” =
∫

d4x
√
−g
{
−1

2
M2

Pl R(g)− 1
4

cφφ†φR(g)− 1
16

c∅R(g)2 +O
(

M−2
Pl

)}
(31)

under the affine curvature in (29) . This action reveals that the scalar masses (8) cannot give rise to the big hierarchy problem [14] in
Table 1 as their Λ2

℘ parts eventuate in the non-minimal coupling cφ/4 between the scalars and the curvature scalar [24]. By the same
token, the vacuum energy in (9) cannot give cause to the cosmological constant problem [15] in Table 1 as its Λ2

℘ (Λ4
℘) part leads

to the Einstein-Hilbert (quadratic curvature [25]) term. (The quadratic term can enable the Planck-favored Starobinsky inflation
[26, 27] for str [1] ∼ 109, as implied by Table 1.) The problems in Table 1 are not the whole story, however. Indeed, as revealed
by the logarithmic action in (20), heavy fields Ψ destabilize light scalars φ unless they couple with seesawic strength m2

φ/m2
Ψ

[10, 11, 28]. Likewise, the logarithmic vacuum energy in (20) leads to a Planckian cosmological constant under the constraint (26)
[10, 11]. These problems can serve as pathfinders in constructing realistic QFTs.

The seventh important point is the sought SM-GR reconciliation: QFTs and the GR get unified as an intertwined whole

SQFT∪GR = SQFT(g, ψ, log Λ℘) +
∫

d4x
√
−g
{
−1

2
M2

Pl R(g)− 1
4

cφφ†φR(g)− 1
16

c∅R(g)2 +O
(

M−2
Pl

)}
(32)

by way of gauge invariance in that gravity is incorporated into QFTs in a way restoring the gauge symmetries broken explicitly
by their UV cutoff Λ℘. Gravity symmerges, that is, emerges for a symmetry reason [17, 10, 11]. Needless to say, δŜ, M2

Pl , cφ and
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c∅ are all bona fide quantum objects calculated in the flat spacetime such that their remnant log Λ℘ dependencies can always be
expressed in dimensional regularization via (22). They can be computed explicitly for a given QFT and the results can be tested via
collider (like the FCC and dark matter searches), astrophysical (like neutron stars and black holes) or cosmological (like inflation
and structure formation) phenomena. The action SQFT∪GR is the master formula for all the cosmological, astrophysical and collider
phenomena. Its field theory part (the SM plus a BSM sector) and gravity part (the GR plus higher-curvature scalar-tensor theory) are
expected to evolve into wider and precise forms as progresses are made in collider experiments [29, 30], astrophysical observations
[31, 22], and cosmological measurements [32, 22, 33].

6. CONCLUSION
The results speak for themselves. Quantum gauge invariance does indeed lead to a QFT-GR reconciliation. In the experimentally-
completed case of the SM, gravitational constant emerges rightly only if there exist new fields beyond the SM spectrum. These new
fields, forming a BSM sector, can form dark matter, dark energy, and maybe more. The SM-GR reconciliation sets up a framework
in which existing theoretical and experimental problems can be consistently addressed.
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